SASE: Complex Event Processing over Streams

Daniel Gyllstroml
Yanlei Diao"

'Department of Computer Science
University of Massachusetts, Amherst
{dpg, chae, yanlei, patrick, gordon}@cs.umass.edu

ABSTRACT

RFID technology is gaining adoption on an incregsinale for
tracking and monitoring purposes. Wide deploymaft®FID
devices will soon generate an unprecedented voloimgata.
Emerging applications require the RFID data to itteréd and
correlated for complex pattern detection and tramséd to
events that provide meaningful, actionable infoioratto end
applications. In this work, we design and devel&$E, a com-
plex event processing system that performs sucha-dat
information transformations over real-time streaie design a
complex event language for specifying applicatiogid for such
transformation, devise new query processing teclasdo effi-
ciently implement the language, and develop a cehemsive
system that collects, cleans, and processes RRiDfdadeliv-
ery of relevant, timely information as well as §tgrnecessary
data for future querying. We demonstrate an injii@totype of
SASE through a real-world retail management scenari

1. INTRODUCTION

Recent advances in RFID technology have facilitat®ddop-
tion in a growing number of applications includisgpply chain
management [4], surveillance [4], and healthcatetpiname a
few. The driving force behind RFID adoption is ueqedented
visibility into systems that have to this point hagobservable.
With this visibility, it will be possible to monite correct, con-
trol, and improve processes of vital economic, e@ti and
environmental importance. For example, real-tinghbility into
supply chain inventory can help detect and prewveivof-stocks
and shrinkage before they occur. Similarly, remetimonitoring
of patients taking medications can help enforceicadompli-
ance and alert care providers when anomalies occur.

The successful development of an RFID data manageme
system for providing such real-time visibility musddress two
unique challenges presented by RFID technology:

* Logic complexity: Data streams emanating from RFID sens-
ing devices carry primitive information about thbject a
tag is attached to: its location and the time ofggg. RFID-
based monitoring applications, however, requirenimesul,

Eugene wu?
Patrick Stahlbergl

Hee-Jin Chae!
Gordon Anderson®

“Computer Science Division
University of California, Berkeley
sirrice@berkeley.edu

actionable informationeg(g., out-of-stocks, shoplifting) that

is defined by unique complex logic involving filkeg, pat-

tern matching, aggregation, recursive pattern niadgletc.

To resolve the mismatch between data and informatias

critical to have a processing component that resiseRFID

streams and performs data-information transformatio

¢ Performance requirements. Large deployments of RFID
devices have the potential to create unprecedartienines
of data. Yet despite the volume of data and logimglexity,

RFID data processing needs to be fast. Filterirgjfem

matching, and aggregation must all be performed Vaitv-

latency.

We design and develop a complex event processistgray
SASE, that transforms real-time RFID data into niegful,
actionable information. We first provide an expiess user-
friendly event language that allows applicationeitzode their
complex logic for such data-information transforimat This
language significantly extends existing languageshsas com-
plex event languages [2][9] developed for activeabdases and
stream languages [1][3][6] with support for sequempatterns
that involve temporal order of events, negationluedased
predicates, sliding windowsgtc. It is worth noting that our
event language is a general purpose languageahdiecapplied
to many application domains. We use an RFID-basetario
because it represents an important emerging cfagsptications
that demand complex event processing and is abbietoon-
strate the various features of our event language.

We then provide a query plan-based approach toiaffly
implementing the proposed event language. This campbr is
based on a new abstraction of complex event primzgshat is
a dataflow paradigm with native sequence operabitbe bot-
tom, pipelining query-defined sequences to subsequela-
tional style operators. This new abstraction alBows us to
explore alternative query plans to optimize foriemas issues in
high-volume complex event processing.

We further develop a comprehensive system thaedcsl|
and cleans data from RFID devices, creates evantsruns the
event stream through the complex event processatetiver
timely results to the user and archive events datbase. Our
system allows the user to query the resulting edatdbase by
either sending ad-hoc queries or writing continuqusries that
combine stream processing and database access.

A prototype of the SASE system will be demonstrated
through a simulated retail-store RFID deploym@&mpecifically,
we demonstrate (1) the expressiveness of the |gegoy show-
ing its uses in specified monitoring queries ad agldata trans-
formation rules for archiving, (2) a complete détav from
RFID devices through various SASE components tal fijuery
output, and (3) track-and-trace queries over antedatabase.



The remainder of this paper is organized as follddextion
2 describes our complex event language and itseimghtation.
Section 3 presents the SASE system architecturioBed dis-
cusses our demonstration scenario.

2. COMPLEX EVENT PROCESSING

In this section, we survey the SASE event languidigeugh
examples, and discuss its implementation.

2.1.1 Complex Event Language

The SASE language has a high-level structure similaSQL
for ease of use by database programmers, but gigndef the
language is centered on event pattern matchinijuasated in
this section. The overall structure of the SASHlage is:

[FROM <stream name>]

EVENT <event pattern>
[WHERE <qualification>]

[wWiTHIN <window>]

[RETURN <return event pattern>]

The semantics of the language are briefly descraseébl-
lows: TheFroM clause provides the name of an input stream. If
it is omitted, the query refers to a default systeput. The
EVENT, WHERE and WITHIN clauses form the event matching
block. The evenT clause specifies an event pattern to be
matched against the input stream. ThERE clause, if present,
imposes value-based constraints on the events ssitdy the
pattern. ThewitHIN clause further specifies a sliding window
over the event pattern. The event matching bloaksfiorms a
stream of input events to a stream of rewmposite events.

Finally, therReTURN clause transforms the stream of com-
posite event for final output. It can select a stitif attributes
and compute aggregate values like $heecT clause of SQL. It
can also name the output stream and the type oftewe the
output. It can further invoke database operatiansrétrieval
and update.

We further explain these language constructs usien-
ples drawn from an RFID-based retail store scen@viach is
used in our demonstration and is further describefkection 4).
In this scenario, an RFID tag is attached to eygpduct in a
retail store. RFID readers are installed abovestiadves, check-
out counters, and exits. These readers generagading if a
product is in its read range. In our examples,asgume that
readings at the shelves, checkout counters, and ave repre-
sented as events of three distinct types.

Our first example query (Q1) detects shopliftingivaty; it
reports items that were picked at a shelf and tagan out of
the store without being checked out. HweNT clause contains
a SEQ construct that specifies ssquence in a particular order;
the sequence consists of the occurrence &fiELF_READING
event followed by the non-occurrence c€@QUNTER_READING
event followed by the occurrence of aRIT_READING event.
Non-occurrences of events, referred to regation, are ex-
pressed using ‘''. For the use of subsequent clude SEQ
construct also includes a variable in each sequeangonent
to refer to the corresponding event. Thieere clause of Q1
uses these variables to form predicates that cargitiibutes of
different events, referred to gmrameterized predicates. The
parameterized predicates in Q1 compareTdgd attributes of

all three events in theeqQ construct for equality. Q1 contains a
WITHIN clause to specify aliding window over the past 12
hours. Finally, theReTURN clause retrieves th€agld and Pro-
ductName of the item, theAreald of the exit, and initiates a
database lookup to retrieve a textual descriptidth® exit €.g.,
the leftmost door on the south side of the stdxefe that our
language provides a set of built-in functions &#rting with

‘ ') for common database operations and can bendgi@ to
accommodate other user functions.

QL EVENT SEQ(SHELF_READING X, ! (COUNTER_READING Y),
EXIT_READING 2)
WHERE X.Tagld = y.Tagld [/x.Tagld= zTagld
WITHIN 12 hours
RETURN X.Tagld, x.ProductName, z.Areald,
_retrievel ocation(z.Areald)

The second example (Q2) illustrates the use ofSASE
language to express data transformation rules fohiang.
Here, we use an event sequence query to deteengeln loca-
tion of an item and trigger a database update fiectethe
change. Th&VvENT, WHERE, andwITHIN clauses are used to de-
tect the location change. THRETURN clause calls a system
function _updatel ocation to perform a location update in the
database. Internally, the event database stords¢hton of an
item usingTimeln and TimeOut attributes, representing the du-
ration of its stay. TheupdateLocation function first sets the
TimeOut attribute of the current location using th&imestamp
value, and then creates a tuple for the new locatidh the
Timeln attribute also set to the valueyoTimestamp.

Q2 EVENT SEQ(SHELF_READING X, SHELF_READING Y)
WHERE x.id=y.id /[Jxarea id!= yarea id
WITHIN 1 hour
RETURN _updateLocation(y.Tagld, y.Areald, y.Timestamp)

Several other queries supported by our languagk hail
shown through our demonstration, as described dtic3e4.

2.1.2 Implementation

SASE is implemented using a query plan-based apprahat
is, a dataflow paradigm with pipelined operatorsnaselational
query processing. As such, it provides flexibilityquery execu-
tion and extensibility as the event language ewlvihis ap-
proach employs a new abstraction for event queogessing.
Specifically, we devise native sequence operatased) on a
Non-deterministic Finite Automata based model which can read
query-specific event sequences efficiently from toarously
arriving events. These operators are then usedrio the foun-
dation of each plan, pipelining the event sequernioesubse-
quent operators such as selection, window, negagion This
arrangement allows the subsequent operators tmplermented
by leveraging relational techniques.

The new abstraction of event query processing alleavs
us to optimize for two salient issues in complerrdvprocess-
ing: large diding windows and intermediate result sets. Large
sliding windows spanning hours or days are commasid in
monitoring applications. Sequence generation frowents
widely dispersed in such windows can be an expenspera-



(SASE) User Interface (SQL)
Continuous \E\ Ad hoc
queries queries

Results

Results —Z£

Event
Event Strem
Processor
(SASE)

Querying over streams Querying over history

| Cleaning and Association I

Communication over socket

Events
Cleaning and Association

Event Generatic

T
Deduplicatiol

T

Time Conversio

T

Temporal Smoothir

T

Anomaly Filtering

Readings

Figure 1: SASE System Architecture

tion. To address this issue, we develop optiminatithat em-
ploy novel sequence indexes to expedite the sequeperators.
Large intermediate result sets also strongly affetry process-
ing. To reduce intermediate results, we stratelyigaish some
of the predicates and windows down to the sequepeeators;
the optimizations are based on indexing relevashtsvboth in
temporal order and across value-based partitions.ifiterested
reader is referred to [9] for details of these téghes.

3. ARCHITECTURE

The architecture of the SASE system is shown iruféidl. It
consists of three layers. The bottom layer contghgsical
RFID devices €.g. tags, readers). The RFID data returned from
RFID readers is passed to the next layer for detaning and
event generation. The event stream is then fetlddhird layer
where most of the data processing takes place.ré& compo-
nent of the layer is a complex event processorphatesses the
event stream to deliver timely results to the wmed archive
events into a database. Our system allows thetasguery the
resulting event database by either sending ad-hmoies or
writing continuous queries that combine stream @seing and
database access. These components are describedtdrdetail
below.

Physical Device Layer. The physical device layer consists
of RFID readers, antennas, and tags. RFID reastens their
reading range in regular intervals and return aingpfor each
detected tag. Each raw RFID reading consisth@Tagld and
Readerld. For our demonstration, we use a Mercury 4 Agile
RFID Reader fronThingmagic and multiple antennas to simu-
late multiple readers. Individual objects are &ygvith EPC
Class1 Generation 1 tags from Alien Technology.

Cleaning and Association Layer. The Cleaning and Asso-
ciation Layer serves two important functions. Fiistopes with
idiosyncrasies of readers and performs data clgarsach as
filtering and smoothing. This is important as RREadings are
known to be inaccurate and lossy. Our data cleacamgponent

is based on some of the techniques described irSgjond, it
uses attributes such as product name, expiratite) ead sale-
able state to create events. This helps facilipabeessing and
decision making in subsequent components. Intgsndhe

Cleaning and Association layer consists of five porents:

1) Anomaly Filtering Layer: removes spurious readitagsl
readings that contain truncated ids.

2) Temporal Smoothing Layer: the system decides wihethe
object was present at timidased not only on the reading at
time t, but also on the readings of this object in a wind
size ofw beforet. Using this heuristic, a new reading may
be created.

3) Time Conversion Layer: a timestamp is appendedati e
reading based on a logical time unit that is set agstem
configuration parameter.

4) Deduplication Layer: removes duplicates, which dsn
caused either by a redundant setup, where two reade
monitor the same logical area, or when an itenrdessin
overlapping read ranges of two separate readers.

5) Event Generation Layer: generates events accorting
pre-defined schema. An important step in eveneg#ion
is to obtain attributes defined in the schema. inaatual
real-world system, attributes.g., product name, expiration
date) can be retrieved from a tag’'s user-memory man
from an Object Name Service (ONS) [5]. In our egst
we simulate an ONS with a local database storirglysct
metadata associated with each item.

Complex Event Processor. The complex event processor
supports continuous long-running queries writterthe SASE
language over event streams. Specifically, it perfo three
tasks.

¢ For each monitoring task such as detection of sttiogi,
the user writes a query and registers it asomrtinuous
query with the complex event processor. The event proces
sor immediately starts executing the query overRIFD
stream and returns a resudty(, a notification) to the user



every time the query is satisfied. Such processomginues
until the query is deleted by the user.

« Transformation rules for data archiving are alsgistered
as continuous queries with the event processorserljae-
ries can be used to remove duplicate data andforams
data to the format required for archival. The résgl
events are streamed to the event database fogstora

« The event processor can further handle complexroomtis

queries that integrate stream processing and dsaba

lookup; upon detection of an event of interests¢éhgueries
require database access to retrieve additionatnvgton,
as shown in Q1 in Section 2.1.1. The event procesgp
ports these queries by first detecting the evéet sending

a subquery to the database, combining informatien r

trieved from the database with that obtained frdme t
stream, and finally returning a complete resutti user.

Event Database. SASE contains a persistence storage com-

ponent to support querying over historical data &mdallow
query results from the stream processor to be jowi¢h stored
data. We use MySQL 5.0.22 as our DBMS. As mentidnete
previous section, RFID stream data is transformgdgurules
declared with the complex event processor befareiéng. Our
system supports two important rules: Location Updatd Con-
tainment Update. For location update, a tag’stlonanforma-
tion is updated when we observe this tag in a idiffelocation
with a different timestamp. For containment updatesdings
from unloading and loading zones are aggregateal anton-
tainment relationship.

User Interface (Ul). SASE has a Ul that allows the user to

issue both continuous queries over the RFID straadhad hoc
queries on the event database. It provides a vim@sentation
for the query results as well as the internal dima through
various SASE system components. The Ul providgarsee
windows for monitoring the events output by thea®ieg and
Association Layer, presenting stream processoryquesults,
and displaying results from event database queries.

4. DEMONSTRATION SCENARIO

Our demonstration is based on a simulation of &c#ypetail
management scenario. The retail store setup cenefsfour
readers (antennas), with one reader in each offal@wing
locations: the store exit, two shelves, and chegkenunter.
Each reader occupies only one logical area. Thispsis de-
picted in Figure 2.

Using this setup, we first have a live demonstratichere
actions (e.g. shoplifting or misplaced inventory¢ simulated
live in our retail-store setup. Continuous quenesnitor and
detect these actions. Then we execute track-acd-tgaeries
over an event database populated with data colléstadvance.

Through our demonstration, we show

1) The expressiveness of the SASE language through its
uses for monitoring queries and data transformation

rules for archiving.

2) The transformation of raw RFID data streams to-a se

mantic level appropriate for higher level monitgrin
applications.

3) The actions performed by each of the SASE compo-
nents by showing a complete data flow from RFID de-
vices through each of the SASE components to final
query output.

Shelves

Selling Area

Storage
Room

Checkout Counter
B =

Ra

| AFID Reader

Figure 2: Demonstration Setup

4) Track-and-trace queries over the event database pre
populated with data simulating typical warehousd an

retail store workloads.
In the live demonstration, we execute the followB4SE
queries:

» Misplaced inventory query: monitoring for an everitere
a shelf item appears on the wrong shelf. The deteaf
such an event triggers an Event Database lookuphfor
movement history of the item (e.g. all the areathinstore
in which the item was previously detected).

« Shoplifting query: monitoring for an event where itam
exits the retail store without passing the checkemunter.
The stream query performs an Event Database lotkug
trieve a textual description of the exit in whidtetitem left
the store.

« Archiving queries: specifying data transformatiates for

archiving,e.g., detecting an event representing a change in

location of an object and performing a databaseatgptb

reflect the occurrence this event.

For each of these queries except for archivingigagwe
first add the individual query to the complex evenbcessor.
Then the actual behavior (e.g. shoplifting or maspd inven-
tory) is simulated live in our retail store. Thesults in the real-
time detection of the behavior and a notificatiooni the SASE
Ul. Additionally, the event stream triggers updadéshe Event
Database according to the database propagatios medgstered
with the complex event processor. The live updatesire that
all Event Database queries (e.g. ad-hoc or onggetréd by
stream queries) are executed over an up-to-daedtthe retail
store.

For example, consider our demonstration for shiomdjf
The query (described in Section 2.1.1) is firsisteged with the
stream processor. Then the shoplifting actioninsukated in
our retail store, resulting in its successful détecand thus an
alert similar to the one in Figure 3. The “Mess&gsults” win-
dow (bottom left corner) displays the fully procegsoutput
from the shoplifting query specified in the “Pres&pueries”
window (top left corner). The output reflects tlesult from the
database query generated and executed by
_retrieveLocation(z.Areald) function in theRETURN clause
joined with x.Tagld, x.ProdName, and z.Areald values com-
puted by the stream query. The three windows irritite-hand
column of Figure 3 display the intermediate resattsiputed by
SASE. The top right window, “Cleaning and AssociatLayer
Output”, monitors the event stream output fromFEhtering and
Association Layer. The window below, “Database Rg€po

the



" & RFID Retail Store Demo JoEd| & e

Preset Queries

Select a Preset Query or enter a guery helow:

EVENT  SEQ(SHELF_READIMNG x, | (COUNTER_READING y), EXIT_READING 2)
HERE  x.Tagld =y Tagld AND xTagld = 2Tagld
ITHIM 12 haurs

RETURM . Tagld, ¥ Prodilame, z Areald, _retrievelocation(z Areald)

Evenis:

DEASASDO00000061 0162087 735[9|TEST TAG|GeneralShell_Reading|6[1147533726
D39A5AS00000000610162072228|2|RED|Mycorp|Sheli_Reading|3|1147533726
BAYAGAG0000000061 0162087 F96|6[YELLOW|Genetech|Shelf_Reading|3[1147433726
B7AZASASOO00000061 016208781 4|6[YELLOW|Genetech|Shell_Reading|3|1147533726
E21ASASO0000000610162072231|5|0RANGEMycorp|Shell_Reading|6[1147533728
4BEASAS0000000061 0162087 726[6]YELLOW|Genetech|Shell_Reading|3[1147533726
47 1i I [*]

I

| R ST

4.

£ Database Report
Query Results:
Ciuery: SELECT Areaklame =
FROM  Area

Messages/Resulis: YWWHERE AreaEPC=1 =

WLERT: Result
- Theft Alert @ Wed May 15 01:45.33 EST 2006 Retail exit =
* Ared pala shirt with Tagld=0x5C84A5A50000000061 0162072226 may have been =

stolen at retail store exit 1.
o

Results and Alerts:
[0x5CA4A5250000000061 0162072225, red polo shirt, 1]

Monitor Events Run Database Query Run Stream Query

Reset Run Preset Query

Figure 3: A Screenshot of the SASE Ul

displays the database query triggered by the steanponent
of the shoplifting query (e.g. the query generatad the
_retrieveLocation(z.Areald) and its result. The “Stream Proces-
sor Output” window (below the “Database Report” dom)
shows thex.Tagld, x.ProdName, andzAreald values computed
by the SASE stream query. The Ul uses these inthateere-
sults to provide a useful message to the user.

During the live demonstration we use the three ol on
the right in Figure 3 to demonstrate SASE’s inteeata flow
and display the intermediate results used to coenfindl query
output.

Our demonstration also illustrates the use of tamui-trace
queries over the Event Database executed as afpeontinu-
ous queries. We pre-populate our Event Databatie RFID
data that simulates typical warehouse and retiéstorkloads,
such as loading/unloading items, stocking shelamd,changing
containmentsgg., moving items from one box to another). This
data represents some interesting movement historyur retail-
store items throughout a simulated supply chain agament
system. We run the following track-and trace qugerie

« Current location: find the current location of &mm.
e Movement history: find the location and containment
changes of an item.

Collectively, the live demonstration and track-arate queries
illustrate the viability of our approach to real+b streaming
applications.

5. REFERENCES

[1] Arasu, A, Babu, S., and Widom, J. CQL: A languftecontinu-
ous queries over streams and relation®B#®L, 1-19, 2003.

[2] Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kird, S.
Composite events for active databases: Semantinggxts and
detection. InVLDB, 606-617, 1994.

[3] Chandrasekaran, S., Cooper, O., Deshpande, AkIFran.J.,
Hellerstein, J.M., Hong, W., et al. TelegraphCQn@wuous data-
flow processing for an uncertain world.CIDR, 2003.

[4] Garfinkel, S. and Rosenberg, B. RFID: Applicatioge;urity, and
privacy. Addison-Wesley, 2006.

[5] MIT Auto-ID Lab. EPC network architecture. Januagoe.
http://autoid.mit.edu/CS/files/3/networkarchite&ur

[6] Rizvi, S., Jeffery, S.R., Krishnamurthy, S., FrankM.J., et al.
Events on the edge. BGMOD, 885-887, 2005.

[7] Jeffery, S.R., Alonso, G., Franklin, M.J., Hong,, \ahd Widom, J.
A pipelined framework for online cleaning of sendata streams.
In ICDE, 140, 2006.

[8] Wu E., Diao Y., Rizvi S. High-performance ComplexeBt Proc-
essing over Streams. 8i=GMOD, 407-418, 2006.

[9] Zimmer, D. and Unland, R. On the semantics of cemplents in
active database management systemiCIDE, 392-399, 1999



